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ABSTRACT 

Research undertaken during the quarter ending September 15, 

1969, is outlined. Topics included are the use of a modal decompo- 

sition of the aperture field in the detection of incoherently radi- 

ating objects and the mapping of the radiance function of the object 

plane, mean-square errors in the estimation of radiance at sample 

points of the object plane, and the properties of filters and pre- 

dictors involving the discrete Fourier transform. 
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1. Detection and Resolution of Incoherent Objects 

Incoherently radiatingobjects produce a t  the aperture of an optical instru- 

ment an electromagnetic f i e ld  that is best described as a spatio-temporal random 

process. Also present there is a background f ie ld  of a similar kind, but with 

much broader distributions i n  frequency and angle. A telescope or other instru- 

ment that  is t o  detect the presence of the object must process its aperture 

f ie ld  i n  such a way that an observer can most surely decide whether the f ie ld  

contains a constituent due t o  the object or not, 

This detection problem is similar t o  the problem of detecting a stochastic 

signal i n  white Gaussian noise, which has been treated by communication theory, 

and the same methods can be brought to bear on it. 

the I<arhunen-Lo&e expansion in  terms of the autocovariance function of the 

signal. 

a Fredholm integral equation whose kernel is the mutual coherence function of 

the l ight  from the object. 

i n  the expansion, one can assess the number of degrees of freedom in  the aperture 

f i e ld  that contribute t o  detection of the object. 

meaning to  the related number of degrees of freedom in  an iniage. 

sive object the eigenvalues of the integral equation are proportional t o  samples 

of the radiance function of the object at  points separated by a conventional 

resolution interval. 

R particularly useful one is 

In optical detection, xhe expansion functions are the eigenfunctions of 

By counting the number of significantly large terms 

The result gives a precise 

For an exten- 

Furthermore, th i s  modal decomposition of the aperture f ie ld  permits deriv- 

ing the optimum detector of the object when the quantum-mechanical properties of 

the l ight  must be taken into account, and the performance 

as a function of the characteristics of the object can be 

of the o p t k  detector 

assessed. Mapping the 
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radiance function of the object plane can be treated as an estimation problem 

from the same point of view. 

Details of this research and its results are presented in a paper, "The 

Modal Decomposition of Aperture Fields in Detection and Estimation of Incoherent 

Objects", attached as an appendix to this report. 

In analyzing the detectability of a uniformly radiating circular object, 

the eigenvalues associated with the generalized prolate spheroidal harmonics 

were needed. Various methods were investigated for computing them, among which 

was the application of the Rayleigh-Ritz method to the differential equation for 

those functions. 

mulas involving the Legendre polynomials were discovered. 

a brief paper, "Some Integrals Involving Legendre Polynomials", attached as an 

appendix to chis report. 

In the course of this work some apparently new integral for- 

They are presented in 

When a telescope or other optical instrument is used to resolve details in 

an object plane, what is in effect being done is to estimate the radiance function 

of that plane. 

is less than h/a cannot easily be resolved, A being the wavelength of the object 

light and - a the diameter of the aperture of the instrument. This limitation can 

be more precisely formulated in terms of the mean-square errors incurred in 

estimates of samples of the radiance function at the points of a lattice super- 

imposed on the object plane. 

points is reduced much below the size of a conventional resolution element, those 

mean-square errors become extremely large. 

in an attachment to this report entitled "Resolution of Incoherent Objects from 

the Standpoint of Statistical Estimation Theory". 

It is generally recognized that details whose angular subtense 

It is shown that when the separation of the sampling 

Details of this matter are presented 
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2. Discrete-Fourier-Transform Fi l ters  

(prepared by Charles L. Rino) 

The purpose of this work is t o  evaluate the performance of certain discrete- 

Fourier-transform approximations t o  linear mean-square filters. These methods 

have been in  use extensively since the development of the Cooley-Tukey fast  

Fourier-transform algorithm. In their  application, however they are interpreted 

as approximations t o  f i l t e r s  designed for  continuously available or  sampled data, 

and ‘the increase i n  the mean-square error has been only qualitatively assessed. 

There is, of course, no serious difficulty i n  th i s  approach. We can show, how- 

ever, that with a slight modification of one standard approach we are led directly 

t o  the discrete transform filters. 

Consider the jointly stationary random processes { Y . )  and { Z  1. 

interested in  l inear estimators of the form 

We are J k 

p =  
n-j  Mjpk  ‘n-k 

k& J 

where J is a s e t  of integers describing the available data. Three cases are of 

interest .  If J is the f i n i t e  s e t  of integers, say J = {le: 0 I R 

be written i n  vector form,and we have 

where gzz is an (M + 1) x (M + 1) matrix with elements [Rzz]i,j = 

..., M. ) and $ ’’ = , ..., R 
(Mj ,OS ‘j , 1 9  J 9M Y Z  ‘RYz- j 9 Ryzl- j Y%- j )  
becomes 

5 MI, (1) can 

MjT = 
R Z z .  . 2  - 

1-J 
Equation (1) 

with the mean-square error 
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The covariance matrix is Toeplitz, and an efficient method is 

inversion.' The method does however , require M operations , 

R j  -yz * (4) 

available for its 

and the ensuing 

matrix operations are cumbrous. 

that Ezz- 1 itself is nearly Toeplitz. Hence for  Ij - k I << M, [Bzz- '1 
approximately a function of j - k.' We can make use of this  t o  avoid the matrix 

inversion i n  approximating M 

interval is inf ini te .  

If J = { R: 

One would l ike  to  take advantage of the fact 

is 
j ,k 

The standard approach is to  assume the data j 2k' 
Hence consider the following inf in i te in te rva l  estimators. 

- m < l <  m l  we can use frequency-domain methods to derive the 

estimator 
k.rr 

where 
J -77 

In th i s  case the f i l t e r  M 

error 

is  sh i f t  invariant, and it achieves a mean-square 
j ,k 

which is  independent of j .  

compute (4). We have iv-P 

'we can now use the discrete Fourier transform t o  

m 

1. 

2. 

W. F. Trench, J. SOC. Ind. App1. I4a:chs, Vol. 1 2 ,  pp- 515-522 (1969). 

C. llino, "Inversion of Covariance Matrices, IEEE Trans. Info. Theory, 
t o  appear March 1969. 
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For the class of spectra we are l ikely t o  encounter m.(w/nx) w i l l  i n  the worst 

case contain jump discontinuixies. Hence M 
J 

is O ( l  kl - I ) ,  and the "alias" error j ,k 

for  sufficiently large N,  w i l l  be small for IpI << N. 

i .e .  one that has 2m + 2 continuous derivatives, where m > 1, E (p) can be 

evaluated explicitly. 

For a smooth function, 

A 
The results are shown in  Fig. 1. 

pj  ,k 
From the preceding discussion we expect M to achieve a mean-square 

error close to (7) except for j near tile ends of -the data interval. 

in  the mean-square error w i l l  be referred t o  as an end effect. 

The increase 

We can verify 

th i s  asymptotically. Consider 

Here 

h 

Y =  n- j 

and 
m 

= 
n-j  

1 The f inal  term is asympto-cically bounded above by (M 

Hence we have 

- M. )2 Rzz(0) + O$$. j - N  J - N  

where the f inal  term makes a large cunrribution near j = 0 and j = N. 

Now consider the data set J = (1: 1 5 01 (1 In th i s  case we must use the 
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Figure Caption 

Alias Error vs. p For f ( w )  = f*P(-a) 
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where the tern i n  square brackets means 

where f(w/nx) = and fk  is the k-th Fourier coefficient of f (w/Ax). 

The ternis cpzz+ aid c p Z z -  coiisciwte tile canonical factorization of +zz. That is, 
i 

and "p,, has only positively indexed coefficients i n  

series;  4 - = 4 z z  has the opposite behavior. The f i l t e r  achieves 

dependent mean- squara error 

- + - 
4 zz +zz 4zz-9 

_I_ . 
zz 

i ts  Fourier 

the j -  

-m 
To approximte 111 (u/&c) we iwst first factor c p z z *  

2m 
IC appears that 

j 
i- 
(a) can be evalua-ced exactly at w = -- for  -N/2 I n 5 N/2 - 1. The details  cp ZZ I1 

are currently being iiivestigated. 

some analytical questioiis remain. 

(14) exactly. 

Computer tesrs  have been encouraging, but 

V k  have as yet found no iiiethod to  evaluate 

Tile problem szeilzs Z'roin the facx that the positively indexed and 

negatively indexed coefficieixks become intermixed when the f in i t e  Fourier trans- 

form algorithm is applied. trle have 

N - l  

Since for  large N a + = 0 and a - ss 0 for  k near IV/2 and f sufficiently 
PIC PN-k 

smooth, we can take 
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inner product 
03 

4rt @bstraet Hilbert space 

prsduct, If we use instead the 

we w i l l  be led directly t o  e s t h a t ~ r s  of the f~ 

minimizing the mean-square w r ~ r  

derived from (18) is (x x,> Bar%)s WQ cm use a whitening approach. If 

we restrict the class o f  f i  

t ively indexed Fourier cocffisimts, I?@ w i l l  ba led ts approximation of (13). 

The filters so derived are aiea~square ~ ~ T Q T  f i l t e r s  for  the class of circular 

random processes wEich lrzavo bear extanoively analyzed 

(61, In this  case we are not 

QF, where zhe p-nom 
K2 

j' J 

Finally we w i l l  exterld ~hese mc3'E;x.aeCis t o  t t ~ a  dimensions. Certain funda- 

mental diff icul t ies  arise since 'there is no general method for  factoring multi- 

dimensional spectra. 

functions. We w i l l  also consider zhe fact  that  the covariances or  spectra are 

never precisely known. 

I t  can, Ziowever, be done for certain restricted classes of 
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The Modal Decomposition of Aperture Fields 

i n  Detection and Estimation of Incoherent Objects 

Carl W. Helstrom 

Department of Applied Physics and Information Science 

University of California, San Diego; La Jolla,  Calif. 92037 

Abstract 

A decomposition of the f ie ld  a t  the aperture of an optical 

system i n  terms of the eigenfunctions of a certain integral equation 

is useful i n  analyzing the detectability of incoherent objects. 

The kernel of the integral equation is the mutual coherence function 

of the l ight  from the object. The decomposition permits specifi- 

cation of the number of degrees of freedom in  the aperture f ie ld  

contributing t o  detection of the object. 

coefficients of the modal decomposition become operators similar to  

Quantum-mechanically the 

the usual creation and annihilation operators for f ie ld  modes. 

optimum detector of the object is derived i n  terms of these operators. 

The 

Specific detection probabilities are calculated for  a uniform cir- 

cular object whose l ight  is observed a t  a circular aperture The 

modal decomposition is also applied to  estimating the radiance dis- 

tribution of the object plane. 
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Helstrom 

Detection, resolution, and parameter estimation in the object space are 

the primary functions of an optical system. 

a plane, the mapping of whose radiance distribution is an important type of 

parameter estimation. Detection and resolution, on the other hand, involve 

decisions among hypotheses about the ob j ect . plane. ’ 

That space is usually taken to be 

The data upon which these decisions and estimates are based are the 

values of the electromagnetic field at the aperture A of the optical system, as 

observed during a finite interval (0, T). 

surfaces process the aperture field in such a way as to facilitate the decisions 

and estimates. 

Lenses, stops, and photosensitive 

The quality of the system can be measured by probabilities of 

correct decisions and mean-square errors in estimates of object parameters. 

These measures are instructively compared with the best values attainable by 

any system working with the same data. 

probabilities of correct decision or minimizes estimation errors is called the 

optimum system, and its structure can be determined by the methods of detection 

The ideal optical system that maximizes 

theory. 394 

When the object plane radiates incoherently, the analysis by detection 

theory employs a characteristic decomposition of the aperture field into 

spatial and temporal modes. 

integral equation whose kernel is the spatio-temporal mutual coherence function 

of the part of the aperture field generated by the object to be detected. 

associated eigenvalues determine the detectability of the object through the 

probability distributions of the modal expansion coefficients. 

a finite number 5 of the eigenvalues are significantly different from zero, 
and only the field modes associated with them contribute substantially to 

detection. Thus specifies the number of significant degrees of freedom,in 

The mode functions are the eigenfunctions of an 

The 

Generally only 
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Helstrom 

the aperture f i e ld  relative to  the detection of a certain object. 

t r a l ly  pure object l ight  !.+ can be factored into a number M of spatial  degrees 

of freedom and a number M' of temporal degrees of freedom. 

M' is the product WT of the observation interval T and the bandwidth W of the 

object l ight .  

For spec- 

The temporal factor 

When the l ight  from the object possesses complete first-order coherence 

at  the aperture, M = 1 and there is a single significant spatial  mode. 

the object is so large, on the other hand, that  the coherence length of i ts  

l ight  is much smaller than the diameter of the aperture, M >> 1 and--as we shall  

see--the mode eigenvalues are proportional to values of the object radiance at 

sample points separated by a conventional resolution interval. 

is provided with a lens t o  focus the l ight onto an image plane, each spatial  

mode, for M >> 1, goes into a conventional resolution element of the image. 

Mapping the radiance of the object plane, furthermore, can be treated as e s t i -  

mating the eigenvalues of these spat ia l  modes. 

When 

If the aperture 

The e igenhc t ions  and eigenvalues of the mutual coherence function of the 

aperture f ie ld  thus supply a precise meaning for  the concept of informative 

degrees of freedom in the aperture f ie ld  with respect to  detection and resolu- 

tion. There is a direct  relation t o  the concept of degrees of freedom in  an 
5 image, as treated by Toraldo d i  Francia and others. 

This paper w i l l  develop i n  some detai l  the modal decomposition of the 

aperture f ie ld  and i ts  application to the detection of an object and the e s t i -  

mation of the radiance distribution of the object plane. 

spatio-temporal f i e ld  modes are quantum-mechanical operators with much the 

same properties as the creation and annihilation operators i n  the usual form 

of f i e ld  quantization. 

Associated with the 

Under normal conditions of observation, the operators 

for different modes commute, and the detection of an incoherent object can be 
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Hels trom 

based on the number of photons counted i n  each mode. 

given for detecting a uniform circular object by observation of the f ie ld  over 

a circular aperture. 

Specific results are 

The theory is developed for a scalar model of the electromagnetic f ie ld .  

Our results can be applied t o  ordinary unpolarized l ight  by doubling the 

effective number M of spat ia l  modes i n  the f ie ld  at  the aperture of the observ- 

ing system. 
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I. The Modal Decomposition of the Aperture Field 

The Field 

In th i s  section the electromagnetic f ie ld  a t  the aperture w i l l  be treated 

classically, and for  simplicity it w i l l  be taken as a scalar. 

frequency part  of the field--or analytic signal--$+(r, t )  is composed of a part  

qs(r, - t )  due t o  the object, when present, and a part  qn(r, t )  due to  the back- 

ground, 

The positive- 

$+(&, t) = 4JS(?, t) + $,(?, t )  . (1.1) 

The background f ie ld ,  o r  "noise", $n(r, ... t )  is  spatially and temporally white, its 

distribution being much broader i n  both frequency and direction than that of the 

object component, or "signal", $s (& , t )  . 
Both signal and noise fields are circular-complex, spatio-temporal 

gaussian random processes. The probability density functions describing them 

are specified completely by their  mutual coherence functions 
1 
$[*ncEl, t 1 3  $3F2, t 2 ) l  = 

vnnC:,, t,; .r2, t 2 )  = N ' W ,  - F 2 )  Wl - t 2 ) ,  (1 2) 

(1 * 3) 1 $%Js(T,, t , )  *;(F22 t ,)l = $(El, t,; .r2, t2L 
where E stands for  the s t a t i s t i c a l  expectation and N' is the spatio-temporal 

spectral density of the background l ight .  

t o t a l  f i e ld  is qn + 9''. 

The mutual coherence function of the 

For convenience of discussion we assume the l ight  from the object to  be 

quasimonochromatic and spectrally pure, so that  its mutual coherence function 

can be factored into spat ia l  and temporal parts, 

'PsC:,, t,; F2, t2> = u?,CF,, 5) x(t1 - t2> exp iw, - t2), (1.4) 

where ~2 = 2 a c / ~  is the central angular frequency of the object l ight ,  whose 
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Hels t rom 

predominant wavelength is A .  The temporal autocovariance function X ( T )  is 

normalized so that x ( 0 )  = 1, and the spatial  part q s ( f l ,  g2)--as i n  111--so 

that  the illuminance a t  point r of the aperture due to the object is P (r ,  r ) /  

2a2c. The to ta l  energy received from the object during the interval (0, T) is 
s -  ... 

Es = (2Q2c)-’T qs(r, r) d2r. - I 
The spectral density of the object l ight  is 

00 

J- m 

with angular frequencies w referred to R.  Its bandwidth W is conveniently 

We shal l  assume, as is normal in  practice, that  the observation time T is much 

greater than the correlation time W - l  of the object l ight ;  WT >> 1. 
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The Modal Expansion 

In treating the optirrnun detection of a temporal gaussian stochastic 

process, or random signal, in the presence of white noise, it is convenient to 

decompose the input to the receiver in a Karhunen-Loive expansion, whose terms 

are the eigenfunctions of the autocovariance function of the signal.' The 

coefficients of the expansion are statistically independent gaussian random 

variables in both the presence and the absence of the signal. 

A similar expansion is useful in analyzing the detectability of optical 

fields.'' The aperture field is written as 

P m  
where the a are statistically independent gaussian random variables. The 

expansion functions f 

interval (0, T) , 

Pm 
(r, t) are orthonomal over the aperture A and the 

Pm - 

P9 SmI-i' 
*(r, t) f (r, t) d2rdt = s qn - 

They are eigenfunctions of the integral equation 

with C a suitable constant. 

Because the object light is assumed spectrally pure, Eq. (1.4) permits us 

to break the eigenfunction f (F, t) into spatial and temporal factors, 
Pm 

(1.10) 

(1 11) 

where ym(t) is an eigenfunction of X(t - s), 
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and 17 (r) an eigenfunction of ps(r, s )  , - -  P -  

(1.13) 

The constant C has been selected in such a way that Eq. (1.13) is equivalent 

to 111, Eq. (5.6) with h = v /N 

received from the object at the aperture A during the interval (0, T), and v 

are the eigenvalues defined in 111. 

where Ns is the average total number of photons 
P P s’ 

P 
Both sets of eigenfunctions sum to 1, 

x h  = 1 ,  P (1.14) 

m P 
and are considered as arranged in descending order. 
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The Temporal Integral Equation 

Studying the temporal integral equation (1.12) briefly will help us under- 

stand the spatial one, Eq. (1.13). Since WT >> 1, the width of the kernel x (T) 
in Eq. (1.12) is much less than the length T of the interval of integration, and 

the spectral density X(w) does not vary significantly as w changes by 21r/T. The 

eigenvalues are then approximately 11 

P T-l X(2m/T), m =..;2, -1, 0, 1, 2 ,... (1.15) gm 
The number of eigenvalues significantly different from zero is of the order of 

WT. The associated eigenfunctions are approximately the complex exponentials, 

ym(t) T-% exp(-Zrimt/T). (1.16) 

The highest frequencies appearing in the significant temporal modes, as measured 

with respect to  ZIT, are of the order of W. 
If the autocovariance function X ( T )  were periodic in T with period T, the 

eigenvalues and eigenfunctions would be given exactly by the right-hand sides of 

Eqs. (1.15) and (1.16), as substitution into Eq. (1.12) easily demonstrates. 

When the width W-l of X ( T )  is much less than T, the fact that X(T) is not periodic, 

but is concentrated about T = 0, does not alter and ym(t) very much. 

Since we are mainly concerned here with the spatial properties of the 

aperture field, we shall assume that the temporal spectral density X(w) is 

constant over the range -vW < w < I ~ W  and zero elsewhere. 

eigenvalues equal approximately to (NT) - I ,  and all the temporal modes specified 

by the ym(t) are equivalent. 

wavefunctions,” and the exact eigenvalues are nearly 

There are then WT 

The exact eigenfunctions are the prolate spheroidal 

f (WT)-1 for 

1 5 Iml c @. The gm become very small for m > WI’. 

W may be lo5 or more. 

In optics the product 
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The Spatial Integral Equation 

We suppose that the object to be detected is very far away and subtends a 

small solid angle from the point of observation. Its radiance is given by the 

function B(u), - in which y is a 2-vector of coordinates in the object plane. 

Then it follows from the Fresnel-Kirchhoff approximation that the spatial coher- 

ence function at the aperture is 13 

where 6(r) is the Fourier transform of the object radiance, - 

B ( F )  = k ( g )  eq(i&*;/R) d2g. (1.18) 

Here 0 indicates an integration over the object plane, R is the distance to the 

object, and k = Z.rr/X. 

By defining new eigenfunctions 

n ; ( ~ )  = TI (r) exp(-ikr2/2R), P -  
we can write the spatial integral equation as 

c 

(1.19) 

(1.20) 

where A is the area of the aperture. The spatial integral equation has now the 

. convolutional form of the temporal one, Eq. (1.12). The function B(r) corresponds 

to X ( T ) ,  the radiance B(u) to the spectal density X(w) . 
When the object is a "point", that is, when it subtends from the aperture 

a solid angle much less than x~/A, the object field possesses first-order 

coherence over the aperture, 6 (r) 5 6 (0). 

equal to 1, and the rest of the eigenvalues h are zero. 

n' (r) associated with h, is constant, 0; (r) = A-%. The remaining eigenfunctions 

There is a single eigenvalue h, 

The eigenfunction 
P 

1 -  
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can be an arbitrary set of functions orthonormal among themselves and to n 1  (T) . 
Only a single field mode at the aperture is significant for detecting a point 

object or for estimating its radiance or its frequency. 14 

When the object is so large that its solid angle spans many multiples of 

h2/A, and when its radiance B(u) varies only slightly over distances of the 

order of ARA-~, the widths of the mutual coherence function and e(;)  are much 
smaller than the diameter of the aperture. 

approximated in the same manner as the ~ ' s  in Eq. (1.12), provided the aperture 

is rectangular. 

The integral equation (1.20) is now a two-dimensional version of Eq. (1.12). 

- ) of integers px and p to The mode subscripts become 2-vectors p = (px 

account for the x- and y-directions. 

The eigenvalues h can then be P 

We denote its length by a, its width by b; its area is A = ab. 

' pY Y 

The eigenvalues h are now approximately 
P 

h A6 B ( P ~ ~ ~ ,  pYGy)/BT, (1.21) P 
where 6x = hR/a, 6y = hl2/b, and A6 = 6 6 Here 

x Y' 
BT = BCO) =/,.@I d2y (1.22) 

is the integrated radiance of the object. 

is approximately 

P - -  

The eigenfunction associated with h 
P 

~'(r) A-' exp[2ai(pxxa-l + pYyb-l)]. (1.23) 

The eigenfunciions nt(r) depend only weakly on the actual distribution B(u) of 

the radiance, provided B(u) - nowhere changes by very much over distances of the 

- 

P -  

Y' order of 6, and 6 

When the area A. of the object is so large that A / 6  6 >> 1, the eigen- 
0 X Y  

values h are proportional to samples of the object radiance at points separated 

in x by 6x = xR/a and in y by 6 = AR/b. associated with Y X Y  
each sampling point subtends from the aperture a solid angle of A /R2 = A ~ / A .  

The number of significant spatial modes in the aperture field is roughly equal 

P - 
The area A6 = 6 6 

6 

11 



Helstrom 

to M = Ao/A6 = AAo/A2R2. 

significant modes are of the order of ao/AR and bo/AR in  the x- and y-directions, 

where a. and bo are the length and breadth of the object. These spatial  fre- 

quencies w i l l  be much less than k/2n = A - l  when A. << R2, that  is, when the 

solid angle Ao/R2 subtended by the object is much less than 1 steradian. 

The highest spatial  frequencies occurring in  the 

If  a lens of focal length F is  placed in  the aperture, it focuses the 

object plane onto an image plane a t  a distance R1 = RF/(R + F) beyond the aper- 

ture. 

point (XI , y')  i n  the image plane a f ie ld  proportional to 

The component of the aperture f ie ld  proportional t o  TI (r) creates a t  
P -  ... 

= AR1/a, 6 = XR'/b, 
&X Y 

where 

(epx3 CPy) = (PX6x'J Py6y1) 
,., ... 

is the geometrical image of the object point ( ~ ~ 6 ~ )  p 6 ), and sinc x = (sin x)/ 
Y Y  

X.  

the 

the 

the 

the 

Thus each spatial  mode of the aperture f ie ld  generates i n  the image plane 

diffracted image of its associated object point. 

mode expansion of the aperture f ie ld  corresponds to the usual expansion of 
15 f i e ld  i n  the image plane through the Whittaker-Shannon sampling theorem. 

In th i s  way the integral equations (1.13) and (1.20) permit a measure of 

number of spat ia l  degrees of freedom in  the aperture f ie ld  that  contribute 

when M = A / 6  6 >> 1, 
0 X Y  

t o  detection and estimation of the object. 

accepted one a t  both extremes of complete first-order coherence (A / 6  6 

and extreme incoherence (A / 6  6 >> 1) , yet is definable through Eqs. (1.13) 

and (1.20) for  intermediate degrees of first-order coherence as w e l l .  

The measure reduces to the generally 

<< 1) 
0 X Y  

0 X Y  
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Circular Aperture 

For a circular aperture a general sampling approximation similar to Eq. 
" (1.21) 'has not been discovered. 

possesses circular symmetry, B (u) = B ( I u I ) , however, the eigenvalues are given 
approximately by 

If the radiance distribution of the object 

where a is the radius of the aperture and the numbers x 

Bessel function of order n, 

are the zeros of the 
kTl 

Jn(xkn) = 0, k = 0, 1, 2, 3, . . . (1.25) 

For n = 0 the eigenvalues have multiplicity 1, for m > 0 multiplicity 2. 

derivation is presented in Appendix A. 

The 

When the object is a circle of area A. = Ta2 radiating uniformly, the 
0 

integral equation (1.20) reduces to the one treated by Slepian.16 The mode 

functions nknr(r) .., are proportional to the generalized prolate spheroidal wave 

functions, and the associated eigenvalues are 

cx = kaao/R = 2aaao/hR, (1.26) 

where A 

parameter c. 

are the eigenvalues tabulated by Slepian; our a corresponds t o  his 
n ,k 

For cx >> 1 the number of significant eigenvalues is approximately 

M = a2/4 = Mo/A2R2, (1.27) 

those of multiplicity 2 being counted twice. 

prolate spheroidal wave functions for representing the field in the image plane 

has been pointed out by Toraldo di Francia. 

The significance of the generalized 

5 
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16 

approach 1 exponentially when 

As Slepian has shown, 

h (a) will be significantly n,k 

the eigenvalues h 

a >> 1. According to.Eq. (1.24), an eigenvalue 

large when the parameter a exceeds the correspond- 

(a) are small for a << 1 and n,k 

ing zero x 

2 x 9 + 3 = 21 zeros xh less than a, counting zeros with n > 0 twice. 

corresponding eigenvalues h (10) the smallest is h6,0(10) = 0.740, For = 

10, M = a2/4 = 25. 

of the Bessel function Jn(x). For a = 10, for instance, there are kn 
Of the 

n,k 

14 
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11. Quantum Detection 

The Mode Operators 

The decomposition of the aperture f ie ld  into spatio-temporal modes can be 

used, as indicated by Kuriksha,17 to  derive the optimum detector of the l ight  

from an incoherently radiating object i n  the presence of thermal background 

light.  

fall  nearly perpendicularly upon the aperture from a cone of directions much 

narrower than 1 steradian and that the diameter of the aperture be much greater 

than the correlation length of the thermal l igh t  and the wavelength of the 

object l igh t .  

The principal assumptions required are that the l ight from the object 

Quantum-mechanically the f ie ld  a t  the aperture is treated as an operator. 

I t  is divided into i ts  positive-frequency part  $+(r, - t )  and its negative-fre- 

quency part  q - -  ( r ,  t), which are hermitian conjugate operators, 

kQ, t) = [Icl+(:, t>1+ .  (2 1) 

Classically $+(r, t) corresponds to  the analytic signal. The mutual coherence 

function of the aperture f i e ld  is 

tl;  T2, t2> = TrEPKCr2, t2> $+(F1, \ t , > l ,  (2 9 2) 

8 where T r  stands for the trace and p is the density operator of the field.  

When the object is present, 4p is the sum of 4ps and 'pn as given by Eqs .  (1.2) 

and (1.3) ; when the object is absent, V = 'Pn. 

The f ie ld  operator q+(r, t) is expanded, in  the spatio-temporal modes 

defined by Eqs. (1.10) and (1.11). 

portional t o  the quantum-mechanical operators 

The coefficients of th i s  expansion are pro- 

15 
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In the expansion of $ (x, t) the hermitian conjugate operators 

appear. Under the assumptions stated at the beginning, these operators commute 

for different spatio-temporal modes; specifically, their comutators are 

+ 
[bpm, bqnl = [bpm , bqJ = 0. (2 * 5 )  - - - * 

These operators play the same role as the ordinary creation and annihilation 

operators for the spatial modes of the electromagnetic field when quantized in 

a closed volume. 6,18 

To derive the first of these commutation relations, the commutator of the 

operators $ + ( T ~ ,  tl) and $ J - ( T ~ ,  t2) is used; it is proportional to the positive- 

frequency part of Green's function for the free scalar field, 18 

$T~(27r) - f / /w-~ exp[-iw(tl - t2) + ik*(r, . . , -  - r,)] d35, 

,2 = c2g2 = 

Using Eqs. ( 2 . 3 ) ,  (2.4), 

c2(kx2 + k + kZ2). 
Y 

and ( 2 . 6 ) ,  we find 

xnq(z2 )  Y,(t,) e x p w  - W)Ctl - t2> + "&'(f, - z2)1 
x d2r,d2r2dtldt dk dk dw. (2 7) 

2 X Y  

In the process we have changed integration variables from (kx, ky, kz) to (kx, 

k , w), with wdw = c21kzldkz. In Eq. (2.7), Y 

16 
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5 -  CF1 - F2) = kx(xl - x2) + kY(Yl - 

z1 and z2 having been s e t  equal to  0 for  points 

The right-hand side of Eq. (2.7) contains 

We haye seen i n  Section I that  the and yn(t,). 

Y2) 9 

on the aperture. 

the Fourier transforms of ym*(tl) 

largest frequencies i n  these 

functions are of the order of W. Hence i n  the integration over w i n  Eq. (2.7) 

a significant contribution w i l l  be made only by values of w within about W of 

a, and W << a. The multiple integral also contains the spat ia l  Fourier trans- 

forms of TI *(K~) and nq(f2). 

are much less than k = 2n/A when, as assumed, the object subtends a solid angle 

much less than 1 steradian. 

(2.7) only values of kx and k much less than k = W/C contribute. 

fore an accurate approximation t o  s e t  

The highest spatial  frequencies i n  these functions 
P -- 

Hence, to the integration over kx and k in  Eq. 

I t  is there- 
Y 

Y 

2 " 2  - k 2 - k 2) 
X Y lkzl = (W c 

equal t o  a/c and take it outside the integral. The integrations over W ,  kx, 

and k now lead to delta-functions, and when these are integrated out and the 

orthonormality of the mode functions is used, the first part  of Eq. (2.5) re- 

sul ts .  

Y 

The second part  follows immediately from the commutator 

[*+b-,, t 1 3  , *+(T2, t231  = 0 

and i ts  hermitian conjugate. 
+ 

The mode operators b b are not ordinary quantum-mechanical operators 
Pm' qn 

because they possess no t i m e  dependence. 

and (2.4), by integrals of the aperture f i e ld  over two spatial  dimensions and 

over time. Despite t h i s  unusual character, the operators f o r  different modes 

are i n  principle measurable simultaneously. In back of the aperture a large, 

lossless cavity is placed, as described in  111. 

to  the aperture f ie ld  during the interval (0, T) , af te r  Which it is closed'; 

They are determined, as i n  Eqs. (2.3) 

In i t ia l ly  empty, it is exposed 

1 7  
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-I- The operators b and b 

creation and annihilation operators of the cavity modes at any later time t > T 

by applying the technique developed in 111. Since b and b commute, so do 
Pm qn 

those linear combinations and are hence measurable by suitable observations of 

can be expressed as linear combinations of the Pm qn 

+ 

the cavity field. 

18 
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The Optimum Detector 

Both the object and the background contain a great many atoms, ions, and 

electrons radiating independently. The density matrices p o  and p ,  describing 

the field under the two hypotheses Ho (object absent) and H, (object present) 

have, therefore, gaussian P-representations. l9 These depend only on the mode 

correlation matrices Tr(p .b +b ) , i = 0, I, which are related through Eqs. 
1 qn Pm - -  

(2 .3)  and (2.4) to the mutual coherence functions of the aperture field under 

Ho and Hl. 

Because the diameter of the aperture is much greater than the correlation 

length of the background field, and because the rays from the object are paraxial, 

the mutual coherence function 'pn of the background light can be expressed in the 

delta-function form of Eq. (l.Z), as discussed in 111, Section IV. Furthermore, 

the mode functions are eigenfunctions of the mutual coherence function of the 

object light, Eq. (1.9). As a consequence of Eqs. (1.2) and (1.9) and of the 

orthonormality of the mode functions--Eq. (1,8)-- ,  the mode correlation matrices 

Tr (p .b +b 

independent and carr be treated separately. 

) under both hypotheses are diagonal. The modes are statistically 

Furthermore, the density matrices 

of the modes, 

1 qn Pm 
I - -  

and p1 now depend only on the number operators n = b 'b 
Pm ... Pm - Pm - 

and because of Eq. (2.5) these commute and are simultaneously measurable. 

Pm 
The operator n determines the excitation level or number of photons in 

- 
the spatio-temporal mode (pm). The outcome n' of a measurement of n is an 
integral-valued random variable with an exponential distribution, 19,20" 

- Pm Pm 
I 

19 



Hels t rom 

and 

(2.10) 

Here K is Boltzmann's constant, T is  the effective absolute temperature of the 

background l ight ,  and Ns = Es/5fi is  the average to ta l  number of photons received 

a t  the aperture A from the object during (0, T).  

(2.9) that  a l l  significant modes have the same frequency a ;  the differences are 

I t  has been assumed in  Eq. 

a t  most of the order of W << a. 

The independence of the modes permits basing the optimum detector on the 

logarithmic 4 likelihood ra t io  

The detector chooses H1, deciding that 

decision level U o ,  which can be se t  t o  

probability 

Q, = Pr(U > Uo IHo).  

In the quantum limit N(l) << 1, 
Pm - 

(2.11) 
- - 

the object is present, i f  U exceeds a 

provide a pre-assigned false-alarm 

<< 1, and v (i) N(i), whereupon the 
Pm Pm - ." 

logarithmic likelihood rat io  is approximately 

U =  [nim + hpgm N s /%I - hpgmNsl * (2.12) 
p,m - ." ... - 

If, as we are generally assuming, the spectral density of the object l ight  is 

uniform over a frequency interval of width W about Q / ~ I T ,  and NT >> 1, the 

eigenvalues can be s e t  equal t o  @T)-l, and the statistic U can be written 

as a sum over only spatial  modes, 
m 

(2.13) 
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where 

n P = C n i m  
I - 

(2.14) 

is the to ta l  number of photons counted i n  spatial  mode p during (0, T) . 
optimum detector weights these numbers logarithmically i n  accordance with the 

expected number N 

The .., 

= h N of photons received in  that mode from the object when 
PS P s ,.,. .-. 

present. 

When the object is a point source, only a single spatial  mode is signifi- 

cant, and the decision can be based on the to ta l  number nlof photons counted a t  

the aperture. Since NT >> 1, that  number has a Poisson distribution under both 

hypotheses H, and H, . 
object can be calculated as described in  111, Section V, where Qd is  plotted as 

a function of the average number Ns of signal photons for various values of 

No = 

The probability Qd = Pr{U > U, IH, 1 of detecting the 

When the object is extensive, A / 6  6 >> 1, yet A. << R2, focusing the 
0 X Y  

object plane onto an image plane associates each significant spatial  mode 

n (r) i n  the aperture with a diffraction pattern in  the image plane. The 

pattern is  centered a t  the geometrical image of the associated object point 
P "  

6 ).  Suppose the image plane to contain a mosaic of photosensitive (px &x, py y 
spots just  coinciding with the central peaks of each of these diffraction 

patterns. 

each spot emitted would be nearly equal to  the number n f o r  the associated 

spat ia l  mode, and a detector that weighted those numbers of photoelectrons as 

If their  quantum efficiency equaled 1, the number of photoelectrons 

P 

i n  Eq. (2.13) would be nearly equivalent t o  the optimum detector, 

detector has been analyzed previously. 

Such a 
2 1  
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The Threshold Detector 

. The optimum detector specified by Eq. (2.13) and depending through Ns on 

the to t a l  radiant power BT of the object does not provide a uniformly most 

powerful test." I t  m u s t  be se t  up for  a standard object of radiance propor- 

tional t o  B(u) and to t a l  power B$O), and it w i l l  provide suboptimum detection of 

objects of different t o t a l  power %. 
. A detector that  is independent of knowledge of BT, yet nearly as good as 

the optimum, is obtained by replacing the logarithm i n  Eq. (2.12) by the f i r s t  

term of i ts  Taylor expansion. 

both statistic and decision level, and the new detector is equivalent to one 

The constant factor Ns/'Jl can be cancelled from 

basing its decision on the operator 

(2.15) 

This is the threshold detector derived i n  111. 

Eqs. (2.3) and (2.4) and the orthonormality of the mode functions, U' can be 

written as a bilinear integral form i n  the f ie ld  operators $ - -  (r, t )  and $+(r, t ) ,  

with a result differing only by an inconsequential constant factor from 111, 

Eq. (4.18). When &il f (WT)'', the threshold detector bases i ts  decisions onthe 

By using the definitions in  

weighted sum 

U" = c h p n p  
P - -  

(2.16) 
- - 

of the numbers n of photons counted in  the spatial  modes p during the interval 
P .., 

the threshold and optimum detectors are identical, basing 

the t o t a l  number nlof photons observed a t  the aperture. 

When M >> 1, as we have seen, there are about M spatial  modes with nearly 

equal eigenvalues h M-' , and both the threshold and the optimum detectors -sum 
P 

22 
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photons in these modes with approximately a uniform weighting. 

differ only in their treatment of modes whose eigenvalues are 

rather less than M'l, and these contribute relatively little to the statistics 

U o r  U". Hence,when their decision levels are adjusted to provide equal false- 

alarm probabilities Q,, the threshold and the optimum detectors attain nearly 

the same probability of detection. 

23 
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Detectability o f  a Circular Object 

when the object radiates uniformly over a circle of radius a and the 
0 

aperture is a circle of radius a, the eigenvalues h =.h determining the 
P P k n  

* 

detection statistic and the probability of detection are given by Eq. (1.26) in , 

terms of the eigenvalues tabulated by Slepian.i6 To illustrate the dependence 

of the probability of detection on the degree of coherence of the object light 

reaching the aperture, we have calculated it for the threshold detector, 

Q = Pr{U" > Uo IH1}, 

as a function of the average total number Ns of photons from the object. The 

decision level U, was set to attain a false-alarm probability 

Q, = P r W  > UolHo) 

equal to 0.01, and the value of No = 92WT was set equal to 1.0. The results are 

plotted in Fig. 1 for various values of a = 2Tiaao/RX, 

For a = 0 a single spatial mode contributes to the detection, and the 

optimum and threshold detectors are the same. The number of photons observed 

has a Poisson distribution, and the detection probability is calculated by 111, 

Eqs. (5.17) - (5.19). 

i n s  Eq. (2.16) were used, corresponding to the four or five largest eigenvalues 

and a computer was programmed to add up the joint Poisson probabilities of 

all sets of numbers n for which the sun U" is less than U,; 

minus this total probability. 

probabilities only slightly, but greatly increased computation time. 

For a = 1 four terms and for a = 2 five terns in the sum 

hlal, 
Q is equal to 1 

!? 
Taking seven terms for a = 2 changed the detection 

For a 3 4  the moment-generating function (m. g. f.) of the statistic U", 

14s; Ns) = E J.explsU")IH11 = 

(2.17) 
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was used to  calculate the detection probability. 

Qo is  the inverse Laplace transform of [l - 1-1 (-s; O ) ] / s  evaluated a t  U" = 

and this was approximated by the method of steepest descent, as i n  111, Eq. 

(5.23). By means of Newton's method the decision &el Uo yielding Q = 0.01 

was determined. 

Gram-Charlier series ,23 whose coefficients are calculated by expanding 43-1 1-1 (s; Ns) 

i n  a power series a t  s = 0. 

decreased, and the summation was stopped when the terms began to  increase again, 

consistently with the asymptotic nature of the Gram-Charlier series. 

The false-alarm probability 

'0 7 

0 

The detection probabilities were then computed by summing the 

Terms in the series were summed as long as they 

In order to  compare the threshold detector with the optimum, the detection 

probabilities attained by the l a t t e r  were also calculated for  a = 4,  6,  and 8. 

The optimum detector was set up for  a standard number Ns(O) of signal photons 

equal to  8; N = 3WT = 1. The moment-generating function for the optimum 

s t a t i s t i c  U is  the same as in  Eq. (2 .17 ) ,  except that exp(hhs) is replaced by 

e q [ s  Rn (1 + N:o)han/No)] , and the same method of computation was used. The 

differences between the detection probabilities for the optimum and threshold 

detectors were of the order of the inaccuracy in  the numerical calculations and 

too small to  show up on the graph in  Fig. 1. 

0 

The results demonstrate the s l ight  difference between the performances of 

the optimum and the threshold detectors, and they show how, f o r  a fixed false- 

alarm probability Q,, the detection probability decreases as the object l ight  is 

divided among more and more spatially incoherent degrees of freedom. 
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Detectability of Large Objects 

The logarithm of the moment-generating function of the threshold operator 

U t  . i n  Eq. (2.15) is 
SU' 

4J-l d s )  = g e  IH1) = 

- Rn(l - Nc1) [exp(hpgms) - 113 Pm P rm ,., 

with the mean value 

limited conditions, 

- .., 

(2.18) 

N(l) given by Eq. (2.10) . 
th i s  is approximately 

Since N(l) << 1 under quantum- 
Pm P - - 

When the object contains many degrees of 

spatio-temporal modes can be replaced by 

and over the object by substituting from 

P P  

freedom, MWI' >> 1, the sum over the 

an integration over temporal frequency 

Eqs. (1.15) and (1.21). The result  is 

Po0 

x {exp[B(u> X(w)s/-W] - 11, (2.20) 

where 3 = BT/Ao is- the average radiance of the object and M = AAo/k2R2 is i ts  

effective number of degrees of freedom. This corresponds t o  111, Eq. (5.14) for 

a point object of arbitrary spectral density X(w) . An expansion of Rn ~ ( s )  i n  

powers of s yields the cumulants of the distribution of the s t a t i s t i c  U', from 

which the coefficients of the Gram-Charlier series can be calculated. 23 An 

example of a point object with a Lorentz spectm.was described i n  111, Section 
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111. Estimation of Object Radiance 

We have seen in  Section I that the eigenvalues h of the spatial  modes 
P - 

are proportional to samples of the radiance distribution B(u) of the object 

when the aperture is rectangular and the object so large that M = AAo/A2R2 >> 1. 

The mode functions are in  th i s  approximation independent o f  the actual form of 

B(u). 

howledge of the true distribution of radiance in  the object plane, and the 

The aperture f i e ld  can therefore be expanded in  spatial  modes without - 

strength of each mode in  the component of the aperture f ie ld  due to the object 

is  proportional t o  the radiance B(u) ... a t  a particular point of the object. 

The random coefficients of this  expansion in  spatial  modes w i l l  be 

s ta t i s t ica l ly  independent. 

B(u) ." a t  points on the object spaced by 6x = AR/a in  the x-direction and by 

6 = hR/b i n  the y-direction, and these estimates can be made independently. 
Y 

Conversely, it is to be expected that B(u) cannot be estimated a t  a f iner 'gr id  

of sample points by any method that does not require simultaneous calculations 

I t  is  possible, therefore, t o  estimate the radiance 

involving a l l  the points. 

A lower bound to the relative mean-square error of an unbiased estimate 

of the radiance B = B(Q ) a t  the sample point u = (px dX, py 6 ) can be ca lm-  

lated by means of the Cram&-Rao inequality. 24-26 As might be expected, th i s  

lower bound is the same as that determined in  I V  for  the relative mean-square 

error of the radiant power of a point source. 

P- P -E ... ," 

Since the number operators n = b 'b for  the spatio-temporal modes 
Pm Pm Pm .., - - 

c o m t e  and can be measured simultaneously, the classical-s ta t is t ical  form of 

the Cram6r-Rao inequality can be used, and since the modes are s ta t i s t ica l ly  

independent, they can be treated separately. The data for  estimating B are the 
P 

observed numbers n' of photons in  the modes [pm), whose joint  probability is, 
Pm - 



Hels trom 

as i n  Eq. (2.8), 

where 

N = g + ~ e  
Pm 

with e = h N proportional t o  B through an equation l ike Eq.(1.21). 
P S  P 

(3.2) 

- - 
The mean-square error of an unbiased estimate 6 of e is bounded below by 

(1 + N 
Pm (3.3) 

By use of Eq. (1.15) and the inequalities 

WT >> 1, N << 1, 
Pm 

the sum over m can be approximated by an integral over frequency involving the 

spectral density X(w) of the object l ight.  

error in an unbiased estimate of e o r  B 

As a result  the relative mean-square 

is bounded below by 
P - 

where N = h N is  the to ta l  average number of photons received from the 
PS P s - - 

object i n  spectral mode p, that  i s ,  fram an area A6 = 6 6 of the object about - X Y  

u . 
-P 

The function f l  ( ) i s  the same as i n  IV, Eq. (3.4), 
- 

cn 

[X(w)]2[1 + c m x ( w ) ] - l  &/27r, (3  * 5) 

and Eq. (3.4) corresponds to  IV, Eq. (4.6) f o r  the relative mean-square error 

in  the radiant power of a point object. 

When the spectral density of the object is rectangular, the to t a l  number 
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of photons from a l l  temporal modes in  spatial  mode p is a sufficient estimator 

of the parameter e or ,  equivalently, of the radiance B a t  the sample point 3 ~ ,  
- 

n r c 

on the object. 24y26 I t  provides an unbiased estimate a f t e r  the known average- 

contribution N = WT of the background is subtracted, and the relative mean- 
0 

square error of the estimate is given by the right-hand side of Eq. (3.4)' where 

now 
f , ( B )  = W ( d a  + 1).  

Under extreme quantm-limited 

error i n  an estimate ii is equal to  

photons received during (0, T) from 

@x 6x, py sY). Under a background 

square error is, as i n  I ,  Eq. (6.3), 

P - 

conditions the minimum relative mean-square 

N -1  , where N is the average number of 

the element of-area 6 6 

limitation ( K 7  >> =hn) , the minimum mean- 

PS PS 
about the point 

X Y  

PS 
where E 

about u 

spatially 

- 
-P' 

= N Tiis2 is the to t a l  average energy received from the area 6 6 PS X Y  

and N '  = K?' is the spectral density of the background light,assumed 
- 

and temporally white. 
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Appendix 

Approximate Eigenvalues of a Circularly Symmetrical Kernel 

Dropping the primes on the eigenfunctions i n  Eq. (1.20) and writing q(r) - 
for  B (r)/Ag (0) , we study the integral equation - 

in which q(r) - is assumed to  be a function of r = Irl only. Its Fourier transform 

Y(P_)  = ~ ( p )  = / q ~ ( f )  exp(-ip-r) * -  d2z 

is a function only of p = 1p I . (Unmarked integrals are taken over a l l  of two- 
27 dimensional space .) Therefore, 

- 

where s = Is1 - and e 

ively . 
and es are the polar angles of the points r and s, respect- r - - 

We assume t o  start with that  the eigenfunction q (s) is given for m > 0 k m -  

where Ch is a normalizing constant and xh = bha is the k-th zero of the 

Bessel function Jm(x); - a is the radius of the aperture. 

that  this assumption is  approximately correct when the radius - a of the aperture 

I t  w i l l  appear l a t e r  
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is much greater than the width of $(r) .  A second set of eigenfhctions is, for 

m >- 0, (s) = Clan J m k m  (b s) s in  me S ; (A51 

the derivation to  follow goes through for  them as w e l l ,  and the resulting eigen- 

values hh are the same. For m = 0 the eigenfmctions are, still approximately, 

%O(S)  = %o J 0 (b ko s). (A61 

Thus the eigenvalues hh have multiplicity 1 for m = 0 and multiplicity 2 for 

m > 0. 

0 I es < 2 ~ .  

All these eigenfunctions are orthogonal over the circle 0 5 s 5 a ,  

Substituting from Eqs. (A3) and (A4) into Eq. (Al) and integrating over 

e,, we find 

hkm nh(g) = Ch COS m8 r 

27 where 

= (p2 - bkm2)- b l a n m  a J (bha) Jrn(pa) . (A8 1 

The function F 

a-3. 

nearly constant for  changes i n  p of the order of a-l.  Therefore, we can put 

~ ( p )  = rc(bh) i n  the integrand of Eq. (A7) and take it outside the integral. 

The integration over P in the first part of the right-hand side of Eq. (A7) can 

now be carried out; 

(p) is sharply peaked near p = b i ts  width is of the order of km km; 
When the width of $(r) is much less than a, its Fourier transform Y(p) is - 

it represents the closure relation for  the Fourier-Bessel 
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- .  transform and yields a delta function s-l6(r - s) . Upon integrating over s, we 
, .  

get approximately 

verifying our choice in Eq. (A4) of the approximate eigenfunctions. Hence 

= y(b ), and translating this result into the notation of Section I, we hla b 
obtain Eq. (1.24) . 
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Figure Caption 

Fig. 1. 

by observations at  an aperture of radius a, versus the average number N of 

photons received from the object. 

No = 92WT = 1.0; 

indexed by the parameter a = Zaaao/hR. 

Probability Qd of detecting a uniform circular object of radius a. 

S 

The average number of background photons is 

the fa l se  alarm probability is  Qo = 0.01. The curves are 
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Some Integrals Involving Legendre Polynomials* 

The following integrals have not been found in any of the readily avail- 

able formularies. In (1) through (4) Pn(x) is the Legendre polynomial of order 

n, and m and n are both odd. 

(rn-n)/2 (m - 1) (m - 3) . . . (n + 1) x-2 Pm(x) Pn(x) dx = 2(-1) m (m - 2). . .(n + 2)’ 
-1 

X-~P~+~(X) P~(X) = 0, m s n, i: ( 3 )  

(m-n-2)/2 (m - 1) (m - 3 ) .  . . (n + 3) 
m(m - 2) ...( n +4)(n + 2)’ x-lpn+,(x> P m W  = 2(-1) 

J -1 

In (4) the numerator is 1 for m = n + 2, f o r  m = n + 4 it is (n + 3) , and so on. 
We first prove (3) by induction. Since P,(x) = x, and Pn+l(x) is ortho- 

gonal over (-1, 1) to P,(x) = 1, (3) is true for m = 1. Assume (3) is true for 

any odd value of m less than n, and use the recurrent relation for the Legendre 

polynomials, 



because of the orthogonality of Pn+l(x) and Pm+l(x), m < n. 

(3) is true for all odd values of m less than n + 2. 

Hence by induction 

For m = n the normalization integral 

when substituted into (6 )  leads to 

as in (4). For m > n, repeated use of (5) and the orthogonality of the Legendre 

polynomials generates (4) from ( 8 )  e 

We prove (1) by induction. It is obviously true for n = 1. Assume it 

true for any odd integer n. By (5), ( 3 ) ,  and (71, / 

[P,+~ (XI I 2  dx = (Zn + [pn+,(x)12 dx 

2(2n + 3j + 2(n + 112 = 2(n + 2 1 2 ,  

whence (2) is true also for n + 2,  and therefore for all odd values of n. 

Equation (2) follows from (1) by repeated substitution of the recurrent 

relation (5) and use of (3) .  

2 



Carl W. Helstrom 

Department of Applied Physics and 

Information Science 

. University of California, San Diego 

La Jolla, California 92037 

Footnote 

.k This research was carried out under NASA Grant No. 05-009-079. 

3 



Resolvability of Objects from the 

Standpoint of Stat is t ical  Parameter Estimation 

Carl W. Helstroin* 

Department of Applied Physics and Information Science 

University of California, San Diego 

La Jol la ,  California, 92037 

Abstracf. 

The values of the radiance a t  points of an incoherently 

radiating object are considered as  parameters of the s ta t i s t ica l  

description of the f ie ld  a t  the aperture of an observing optical 

instrument. By means of the Cram&-Rao inequality a lower bound 

is set to  the mean-square errors of unbiased estimates of the 

radiance values. 

the object is sampled a t  points separated by less than a conven- 

tional resolution interval. 

The errors are shown to increase rapidly when 

1 



The ability of an optical instrument to resolve deeails of an object can 

be evaluated in various ways. All of them lead to the general conclusion that 

if the instrument takes in light of wavelength A from the object through an 

aperture of diameter a, it will blur details having an angular subtense smaller 

than A/a--a conclusion that might be drawn from the undular nature of light 

simply by dimensional analysis. 

A common explanation of how the optical instrument obliterates fine 

details views it as a linear spatial filter transforming the light field at the 

object plane into the light field at the image plane. The aperture limits the 

spatial bandpass of this filter, and the loss of high spatial frequencies pre- 

vents the reconstruction of features of inversely proportional dimensions in the 

object. 

object and the resultant analyticity of its spatial Fourier transform should 

permit reconstruction of the entire object by mathematical operations on those 

This viewpoint has led to the proposal that the finite size of the 

spatial frequencies that do pass the aperture.l The inevitable presence of 

random background light and the unavoidable introduction of random noise in 

recording the image light subject any such procedure to deleterious errors. 

The influence of noise on other linear estimation schemes has been analyzed by 

Rushforth and Harris. 

2 

3 

This approach to resolution through linear filtering is most suitable for 

coherent object fields. 

light. 

the sake of certain phase effects, the light emanating from most objects possesses 

Ordinary objects, however, radiate or reflect incoherent 

Except in microscopys where coherent illumination may be utilized for 

a very low degree of spatial coherence. 

radiating objects it is not the field of the light that is of interest, for 

With such incoherently illuminated or 

2 



that  f ie ld  is best described as a random process having zero mean value and a 

most erratic spatio-temporal variation. 

the f ie ld ,  averaged over many cycles of the dominant temporal frequency a,  that  

Rather it is the mean-square value of 

characterizes the object i n  the most informative way. 

coherence function of the l ight  f ie ld  ~ ~ ( u ,  - t )  immediately in  front of the 

object has the form 

Specifically, the mutual 

1 2 Jii Qo(yl, t l )  $ o * ( ~ 2 ,  t 2 )  = 

= CB(Ll,> 6(Fl - V 2 )  XCt ,  - t2) e x p r - i w  1 - t ,> l ,  
where B(u) - is the radiance of the object a t  point u ,  X(T) is the temporal auto- 

covariance of the f ie ld ,  C is a suitable constant, and E - denotes the s t a t i s t i ca l  

expectation. 

signifies that  the coherence length of the l ight is much smaller than the extent 

of any details  of interest .  I t  is the radiance function B(u) - that describes the 

object for  us. 

The presence of the two-dimensional delta-function 6(ul - - VI) 

As the l ight  propagates toward the aperture of our optical instrument, i t s  

coherence function changes i n  a predictable fashionj4 but i ts  f ie ld  remains a 

stochastic process, to  which is usually added another random f ie ld ,  referred to 

as the background. 

angle that is generally much broader than that of the object l ight.  

of the radiance B(9) a t  various points of the object, which are the quantities 

we really want to  know, are related to  the net f ie ld  a t  the aperture not i n  a 

deterministic fashion, but only in  a s t a t i s t i ca l  sense. 

the joint  probability density functions of the aperture f ie ld .  The function of 

the optical instrument is t o  estimate them by some operation on that f ie ld ,  and 

the estimates w i l l  be subject t o  error because of the stochastic nature of the 

l ight  from the background and from the object i t s e l f .  

This background f ie ld  has a distribution in  frequency and 

The values 

They are parameter 
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In a previous paper we pointed out how the resolvability of details  i n  

the object plane might be treated as a problem in  decision theory.' The optical 

instrument is required to decide whether two close objects of a specific kind 

are present, o r  only one. 

function of the separation of the t e s t  objects,measures the resolvability of 

details  having the same size and form. 

The probability of i ts  deciding correctly, as a 

A subsequent paper introduced a modal expansion of the aperture f ie ld  

arising naturally in  an analysis of the detectability of incoherently radiating 

objects.6 The strengths of the several modes are directly related to the 

radiance of the object plane at points separated by a conventional resolution 

interval hR/a, R being the distance of the object, 

errors i n  unbiased estimates of these radiance values were derived from a quantum- 

s t a t i s t i ca l  description of the f ie ld .  

The minimum mean-square 

Here we shal l  develop the s i a t i s t i ca l  theory of resolvability further by 

viewing the function of an optical instrument as one of estimating the radiance 

of the object plane. 

the samples are regarded as parameters of the joint  pdf's of the aperture field.  

By means of the Cram&-Rao inequality lower bounds are set to  the mean-square 

errors of unbiased estimates of those parameters. 

The radiance B(u) is  sampled i n  a suitable manner, and 

We shal l  demonstrate how 

these minimum mean-square errors soar when the radiance is sampled at  points 

closer together than the conventional resolution interval hR/a. 

4 



I. Sampling the Object Plane 

It is the radiance B(u) of the object plane that is to be estimated as a 

Since it is impossible to estimate B(u) at function of position u = (ux, uy). 

all points of the plane, the plane must be 

by which this can be done. 

The most definitive methods employ a 

sampled, and there are several ways 

set of functions Fm(u) that are - 
orthogonal over some part 0 of the object plane, or over the whole of it, 

Fm(u) Fn* (u) d2u = Cm Sm9 - - - ..,.., 

where Cm is a suitable normalization constant. 

by a two-vector index m .., = (mx, my). 

The functions are distinguished - 
In terms of them the object radiance is 

and in general only a finite number of coefficients, or B will be m 
estimated. 

samples Bm have the dimensions of radiance. 

The sampling functions FIil(u) are taken dimensionless so that the - - 
- 

The functions F (u) might conveniently be the indicator functions of m -  
contiguous rectangles ax x a in the plane, Y 

Fm(u) = 0, u elsewhere. 

B is then the average radiance over the rectangle centered at (mx Ax, m A ) . 9 Y Y  
Alternatively we might use the sampling functions 

5 



Fm(y) = sinc(xAx-l - m ) sinc(yA - my) s (1 4) - X - Y  
with sinc z = (sinrz)/rz. 

lying entirely within a rectangle x A in the spatial-frequency plane, 

the coefficients in Eq. (1.2) are samples of B(u) at the lattice points, 

If the radiance B(u) has a spatial Fourier transform 

Y 

B = B(mx Ax, m A ), (1 5) m Y Y  
7 by the two-dimensional version of the Whittaker-Shannon sampling theorem. 

Because the hxtions F (3) in Eqs ,  (1.3) and (1.4) are centered at points m 
of a lattice, we refer to these fornis of sampling as lattice sampling. 

both, Cm = A A = An. 

practice only a finite number of samples Bm will be estimated. 

and A 

For 

The region 0 is the entire object plane, although in 
.., X Y  

The smaller Ax 

the finer the details in the object plane that can be described by Eq. 
.., 

Y' 
(1.2) 0 

A third representation of the radiance of the object plane can be obtained 

from a Fourier series, with 

Fm(g) = exp[2.rri(mx xbX-l + m yb -I)], 
.., Y Y  

1 1 1 -+ b, < x < - b -- b < y < y by, (1.6) 2 X , 2 Y  

The region 0 is now a rectangle bx x b with area A. = b b , and Cm = Ao. 

The greater the number of terms retained in Eq. (l.Z), the finer the detail it 

can describe. We call this "Fourier sampling". 

Y X Y  - 

6 



11. The Aperture Field 

The object plane radiates incoherently, creating a t  the aperture of the 

optical system a f ie ld  q s ( ~ ,  t)--assumed fo r  simplicity t o  be a scalar--that is 

a circular-complex gaussian spatio-temporal random process. 

density functions of this  process are completely determined by the mutual 

coherence function of the object f ie ld ,  

The probability 

qs(T19 t l ;  r z ?  tz) = E [ $ s ( T 1 9  $s"C", t z ) l*  (2 1) 

Also present is background l ight  whose f ie ld  $n(r, t )  has the same s t a t i s t i ca l  

character, but is spatially and temporally white with spectral density N. 

the basis of the to ta l  aperture f ie ld  

- 
O n  

observed during a f in i t e  interval 

are to  be estimated. 

(0,  T) ,  the samples Bm of the object radiance - 

For convenience of discussion we assume that the object l ight  is quasi- 

monochromatic and spectrally pure, so that i t s  mutual coherence function can be 

factored into spatial  and temporal parts, 4 

cP,CFl, t,; FZ' t2)  = Qrl, F2) X(t, - t z )  

x exp[-iG(t 1 - t 2 ) I 9  (2 .3)  

where = 2 x / h  is the central angular frequency of the object l ight  and h is 

its wavelength. 

The temporal autocovariance function X ( T )  is  normalized so that x(0) = 1. 

Its Fourier transfom,4m 

X(w) = X ( T )  eiwT dT9 

J- a, 

7 



which is positive and real, represents the spectral density of the object l ight ,  

with angular frequencies w referred t o  D as origin. 

object l ight is conveniently defined by 

The bandwidth W of the 

a3 

w =  X(w) &/2T 

In optics the product WT is normally nnrch greater than 1; indeed, it may be 

105 or more. 

The spatial  autocovariance function qs(rl, I--) is so normalized that 

cp,(x, r)/2Q2c is the illuminance a t  point F of the aperture. 

Es received from the object during the observation interval (0,  T) i s  

The to ta l  energy 

ES 

P 

where indicates an integration over the aperture. J, 
The object plane, we assume, is so fa r  away that the l ight  rays from the 

part  of it being estimated are paraxial. 

can be expressed in  terms of the radiance B(u) ... through the Fresnel-Kirchhoff 

The spatial  autocovariance qS(xl, r2) 

9 approximation, 

(2 7 )  

where k = Q / C  = ZX/A and R is the distance between object and aperture planes. 

Through Eq. (1.2) the spat ia l  autocovariance function depends on the se t  B ... = 

{B,} of radiance samples, - 
8 



In th i s  way the samples B - = {BmI are parameters of the joint  probability density 

functions of values of the aperture f ie ld  $+(r2 t) a t  various points F and times 
- 

1;. 

The foregoing description is based on classical  physics and requires 

N = KZ >> W, where K = Boltzmam's cons tan t ,y  is the effective absolute 

temperature of the background, and +i = Planck's constant h / h .  

the observations are said to  be quantum-limited, a condition requiring an easy 

modification of our results.  

When K T  << Tin, 

- 9  



111. Errors in Estimates of Radiance Samples 

m e  samples B = {B } specifying the radiance distribution of the object - m - 
plane are to be estimated from observatioxl of the field $+(?, t> at  the aperture 

of an optical system. 

accurately as possible. How well it be ewected to per 

by the mean-square errors cm in the 

The system is t~ be designed to make the 

fj of the samples m -. 

By restricting ourselves 

= Bm, - 
we can set a lower bound t o  E~ 

where the matrix L - = I lLml I = 

is 
- - -  

Him -." 

Here p(9; B) is the 

-. 

t o  unbiased estimates, 

estimates as 

can be assessed 

(3 1) 

10,ll by means ~f the Cram&r-Rao inequality, 

(3 33 LE 
H-lis iuvarse to the matrix H, whose (mn)-element .. - --  

(3.4) 

joint probability density function of samples JI = {$+(r t ) I  - -P' 9 
of the aperture field at points r 

the expectation E, the right-hand side of Eq. (3.43 must be taken to the limit 

of an infinitely dense sampling af A and (0, T) . 

E A m d  at times t E (0, T). After forming -P 9 

The off-diagonal elements of the matrix 

of unbiased estimates gm a t  different points. 

trary column vector of real elements and is 
- 

% V X 1 T L X ,  I - -  - - -  

& are related t o  the covariances 

Specifically, if X is an arbi- - 
its transposed row vector, 

(3.5) 

where the elements of the matrix V - = I IVmI I are the covariances -- 
l o  



(3.61 = E($ - B m m n  - Bn)' - * - - 
Eq. (3.3) is a special case of Eq. (3.5). 

The significance of the multidimensional Cram&-Kao inequality is best 

understood i n  terms of the concentration ellipsoid of the errors,  a quadric 

surface whose equation is y JT-ly = m + 2 i n  an m-dimensional space with coor- 

dinates 7 = (y, , y2 

Equivalent to  Eq. (3.5) is  the inequality 

1 2  . . . , ym) where m is the number of radiance samples. 

N 

Y - -  V-lY - s ? - _ -  H Y, ( 3  7) 

which asserts tha t  the concentration ellipsoid l i e s  outside the ellipsoid whose 

equation is 
N 

Y - - -  H Y = m + 2.  (3 .8)  

When the errors are uncorrelated, the axes of the concentration ellipsoid are 

proportional t o  their  r . m . s .  values. 

At large signal-to-noise ra t io ,  the maximum-likelihood estimates of the 

parameters Bm have approximately a joint  gaussian distribution, and the level 

surfaces of th i s  distribution are ellipsoids parallel  to  the concentration 

ell ipsoid.  

- 

The Cram&-Rao inequality in  th i s  l i m i t  becomes asymptotically an 
10  equality. 

When as here 

form, the elements 

the density functions p($; B) have the circular gaussian 

of the matrix H - are given by 

- -  

where the ambiguity function ] B ( 2 ) )  is 



x I q&, r; d2:I-2. (3.10) 

- 
d 

After the differentiations in Eq. (3.9), B(l)  and B(2) are set equal to the true 

set B of radiance samples. 13,14 ." 

If we now substitute from Eqs. (2.7) and (2.8) into Eq. (3.10) and differ- 

entiate as in Eq. (3.9), we obtain 

where ID 

is the total radiant power of the object plane and 

with 

g7.1 = 

proportional to the 

(3.11) 

(3.12) 

Fourier transform of the indicator function IA(r) of the 

where 

(3.13) 

aperture .15 The matrix element 

is the Fourier transform of the 

can also be written Jmn - _  

(ilu - . -  0 r/K) d2u (3.15) 

sampling function F (g).  In order to evaluate m 
the minimum mean-square errors as in Eq. (3.3) it is necessary to invert the 



Under quantum-limited conditions, N = K 2 '  << ?in, the factor (Es/N)2 (WT)'l 
1 4  i n  Eq. (3.11) must be replaced by NsMl (2)) , with 

(3.16) 

where X(W) is given by Eq. (2.4), a= Ns/&%MT, Ns = Es/5n is the average to ta l  

number of photons received from the object during the interval (0, T ) ,  M is the 

number of spatial  degrees of freedom in  the object l ight  a t  the aperture, and 

= [exp (+in/KT) - 11 -1. (3.17) 

The number T/I is  given by 

(3.18) 

and is roughly equal t o  AAo/h2R2, where A is the area of the aperture and A. is 

the area of the part  of the object plane whose radiance is being estimated. 

When Z)>> 1, an extreme quantum-limited condition, f , ( D )  i 1 and the factor 

(Es/N)2 (WTj'Zn Eq. (3.11) is replaced by NsM. 



IV, Lattice Sampling 

Under l a t t i ce  sampling the functions Fm(u-) are obmined by translation of 
-. 

the central function F, (u) - , 

F,,(y) = Fo(ux + mx nxF u + m A ) .  (4.1) - Y Y Y  

The matrices H and J then have the Toeplitz form; that is ,  their  elements depend 

only on the differences of their  indices, Jm = J  m-n, where 

- - 

- -  - -  

J =  I? ,CVJ F o * b 2 )  I g(vl - y2 - bp) l 2  dzxld2x2 
- - 

= A-2 / j K o ( ~ l  - r2) l 2  exp[-ika -p * (r -1  - r2)/ll] - d2Zld2F2, 
A A  - 

- 
In practice the matrix J - = I iJnl-rll I w i l l  be f i n i t e ,  and there w i l l  be no 

Under certairi conditions, however, an 
- -  

simple analytical form for  i t s  inverse e 

approximate formula f o r  the elements of the inverse inatrix G - = J-I - can be ob- 

tained by assuming that  J - is  inf ini te  iii extent. 

extension of J by Jo3. 

ments of Gw - are solutions of the array of simultaneous equations 

We denote this inf ini te  

Its inverse Gm also has the Toeplitz form, and the ele- 

These equations c m  be solve-1 by LI Fourier transformation, provided the 

inverse of Jm exists.  

tions to  the diagonal elements of C; - bvlien C; - has iriariy elmients 

diameter of the part 0 of the object plane being esriinated i s   any times greater 

14 

The diagoxal elenients Gw 
rri 

of Gm w i l l  be good approxima- - - 
chat is when xhe 



than the sampling intervals A and A When Ax and A are too small, as we shall  
X Y'  Y 

see, the approximation breaks down because - JW-I no longer exists. 

We define the discrete Fourier transforms 

Jc" exp(ip*w), (4 9 5 )  P P -  
jig) = 

.., 

- 
which have periods 2n i n  wX and w . 

Y 
Then, as i n  the convolution theorem, Eq. 

(4.3) is equivalent to 

and the, diagonal elements of G" are 
.., 

The lower bound on the mean-square error E of an unbiased estimate of !c 
Bm is  then approximately - 

E 2 (N/Es)2 WT BT2 G". m - 0 
(4 8 )  

The factor Gw i n  the right-hand side of th i s  inequality is actually larger than 
0 

the factor G 

not constitute a true lower bound. 

= (Z-l),, that  should appear there, and Eq. (4.8) therefore does - -  mm -.., 

Substituting the second part  of Eq. (4.2) into Eq. (4.54, we obtain 

(4 91 



my), and r = (xj, y j ) ,  j = 1, 2. where mx and m are integers, m = (mx, 

the aperture A to be rectangular with sides ax and a 

over it 

Taking 

we find after integrating 
j Y 

Y' 

a term of the sum being set  equal to zero whenever either of its square-bracketed 

factors is negative. 

The inverse [ j  ( w ) ] - I  ceases to exist when - 
= "R/ax > Zax 

YX 

o r  

yy = kR/A > 2a Y Y' 
1 that is, when Ax < XR/2ax = $ d X  or A < XR/Za, = - 6 

over a finite area of the rectangle -T < (ax, w ) < T .  

no longer has as inverse, and the diagonal elements of G cannot be approximated 

by Eq. (4,7). 

for then j (F) vanishes 

The infinite form of J 
Y , 2 Y' 

Y 

as 



Sinc-function Sampling 

The analysis is simplest for sinc-function sampling as in Eq. (1.4).  From 

Eq. (3.15), 

(4.11) 1 < y < - y  1 1 -7 yx < x < -y KO (r) = Aa = Ax Ayy 2 x’ -zyy 2 YY 
KO(:) = 0 elsewhere. 

Putting this into Eq. (4.10) we find 

the square-bracketed expressions again vanishing when their contents are nega- 

tive. Substituting this into Eq. (4 .7) ,  we obtain 

(4.13) 1 1 \ > tix, A > 7 (SY. Y 

The relative mean-square error in an unbiased estimate of the radiance B at m 
point L& = (mx Ax, K A ) is now, by Eq. (4.8),  

.., Y Y  
Em/~m2 2 (N/E , )~  W T ( A ~ ~ / A ~ ~ )  ln(1 - -1 &x RnCl - -1 &Y 

Y 2 A  - -  2AX 

= ( N / E a 2  WT (AA/As) G i w ,  (4.14) 

with 
6 

= 4(AA/As) Rn(1 - Rn(1 - 6) 
2AX Y G O  (4.15) 

In Eq. (4.14) E A  is the total energy that would be received from the area AA = 

of the object if it radiated uniformly. The bound is approximately valid 
1 1 

% 4 y  
only when $ > -z and A > - 6 where Y 2 Y’ 

6x = wax, 6 = w a y  (4.16) 

1 7  



are the conventional resolution elements in the x- and y-directions on the 

ob j ect plane. 

When the sampling intervals A and A are much greater than the resolution 
X Y 

elements 6x and 6 

becomes approximately 

respectively, the relative mean-square error in Eq. (4.14) Y) 

(4.17) 

where MA is the number of sampling rectangles into which the object is divided, 

Es = MA E, is the total energy received from the object, and 

M = Ao/As = MA AA/A6 (4.18) 

is the number of spatial degrees of freedom in the object field. Since the 

total 

which 

radiant power BT is proportional to the sum 

Bm 9 m -  ." 

contains M terms, we conclude that the relative mean-square error in an A 

estimate of BT is bounded by 

E(f$ - BT)~/BT~ >, (N/Es12 w, (4.19) 
17 in agreement with a previous result. 

With sinc-function sampling the matrix elements J themselves can be eval- 
P 
I 

uated in closed form from Eqs. (4.2) and (4.11). They are 

J = A  A J '  P 6 A P  - 
with 

and 

(4.20) 

(4.21) 

P 
J ' = ( 2 ~ ~ ) - ~  (A6/AA) [l - (-l)px] [l - (-1) y]/px2 py2, 
P 

(4.22) J a r  = (l - &) (1 - 8) 9 A x >  -.fix, d Ay > 4 1 
2 Y' 
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One-Dimensional Object 

The accuracy of our approximation to G" can be most 

ically for estimates of the radiance of a one-dimensional 

easily assessed numer- 

object. We consider 

the matrix J1 - = I I Ji-nl I whose elements are the one-dimensional versions of 
those in Eqs. (4.21), (4.22), which were derived for sinc-function sampling. 

Here, after subscripts x and y are droppeds 

J ' = (2n2)- l  (6/A) [I - (-l)p]/p2 P 
' = (1 - 6/4A), A > y, 1 (4.23) Jo 

J = (n/s) sinc2(pA/6), A < 9. 1 

P (4.24) 

Eleven- and fifteen-rowed matrices I IJ' I I were inverted by a digital m-n 
The central--and largest--element of the inverse matrix G '  is plotted computer. 

in Fig. 1 as a function of the ra5o 6/A; these are the curves marked "11" and 

it1511 . The curve marked ''w" displays the diagonal elements G i m  of the infinite 

matrix J l " ;  they are given by the one-dimensional form of Eq. (4.15), 

G i m  = 2(A/6) ]&(I - 6/ZA) I , 6/A < 2. (4.25) 

The graph illustrates the extremely rapid increase in the mean-square 

error when an attempt is made to estimate the radiance at points closer than 

$ = AR/Za, where a is the width of the aperture. The central element of 2 I - l  
soon reaches astronomical values, rising the faster, the larger the number of 

points at which the radiance samples are unknown. 

the minimum mean-square error of the estimate is insensitive to the number of 

points involved and is close to the value calculated by assuming the number to 

be infinite. 

1 For A < p ,  on the other hand, 

The diagonal elements of 5l-l decrease from the center 
The reason for this is that the assumption of a the matrix. 
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sample points requires the radiance to be lazown precisely at points outside the 

sampled area. The estimates of Bm for points near the edge are influenced by a 

smaller number of unknown radiance values and can therefore be made more 

accurately. 
1 At large signal-to-noise ratio the elements G '  of the inverse matrix - J v -  

are nearly proportional to the covariances ofthe errors in the estimates Bm and 
mn 

1 . For > p  these are approximately equal to the elements GA'n of Gvr = - J f m - l ,  Bn 
where from Eq (4.4) 

(4 26) P 

In Table 1 we have listed the asymptotic correlation coefficients GfoD/GroD for 

several values of 6/A.  

imately uncorrelated. 

P 
When A is much larger than 6 ,  the estimates are approx- 

As A increases, the correlation spreads over more and 

more adjacent elements. 

Table 1 

Correlation Coefficient of Radiance Estimates 

Number of Intervals, p 

* 0 1 2 3 4 5 6 7 

0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.5 1.0 -0.0582 0.00417 -0.00676 0.001i37 -0.00245 0.00048 -0.00126 

1.0 1.0 -0.139 0.0237 -0.0194 0.00658 -0.00720 0.00301 -0.00373 

1.5 1 .0  -0.269 0.0882 -0,0576 0.0307 -0.0242 0.0152 -0.0131 

1.9 1.0 -0.505 0.304 -0.230 0.174 -0.142 0.115 -0.0983 

3.0 1.0 -0.936 0.764 -0.538 0.321 -0.155 0.0556 -0.00117 
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The last line of Table 1 lists the correlation coefficients Gio/Gio obtained 

from the central row af  the inverse G' = 

elements were calculated from Eq. (4.24) for &/A = 3. 

mch more strongly correlated than for &/A < 2. 

reflects the fact that the two sample points 7 units on each side of center lie 

at the edge of the observed area, where the estimates are influenced by somewhat 

fewer unknown radiance values than for points near the center. 

of the 15 x 15 matrix J', whose 

Adjacent estimates are 

The small value for p = 7 
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Indicator-Function Smpling 

when the indicator functions of Eq. (1.3) are used for sampling in one or 

two dimensions, the matrix elements J' are integrals that cannot be expressed in 

closed form. 
P - 

The Fourier transform of the central indicator function is 

(r) = sinc(X/yx> sinc(y/y 1, (4.27) 
Y 

with yx = hR/Ax, yy = hR/A 

of the central diagonal elements of J f q l  are 

For a one-dimensional object the approximate values 
Y' 

p Y2 co 

(u - m)-2 [l - Iu - ml du, 
m=-m 

n < 26, (4.28) 

corresponding to Eq. (4.25). 

numerical integration was required. 

This has been plotted as a dashed curve in Fig. 1; 

22 



V. Fourier Sampling 

The minimum mean-square error of an unbiased estimate of any of the coeffi- 

cients B in the expansion of the object radiance, Eq. (l.Z),is given by Eqs. m 
(3.3) and (3.9),  

- 

E > (N/Es)2 WT BT2 Gm, (5.1) 
... ...- m -  

where Gm is a diagonal element of the matrix G = J-l. The elements of J are in -- 
turn given by Eq. (3.10). The matrix inversion would be simple if J - were a dia- 
gonal matrix, and it is natural to look for the kind of sampling for which it is. 

The matrix J - will be diagonal if the orthogonal functions Fm(~) are eigenfunctions - 
of the integral equation 

whose kernel I g(2 - ! ) I z  is defined by Eq. (3.11). 

The object whose radiance is t o  be estimated is assumed to occupy a finite 

region 0 of the objcct plane. 

the width of the kernel I ~(LI) 1 2 ,  which is of the order of 

area of the aperture. 

for a rectangular object, sinusoids as in Eq. (1.6); and the eigenvalues Am, 

which will be the diagonal elements of J, are the values of the Fourier trans- 

form of the kernel / $(?) I 
tions by 2n/bx and 2T/b 

breadth of the object. 

Its diameter will in general be much larger than 

, A being the 
As discussed previously,18 the eigenfunctions are then, 

- 

evaluated at points separated in the x- and y-direc- 

respectively, where bx and b are the length and Y’ Y 
Thus we are led to Fourier sampling. 

The Fourier transform of the kernel I d (y) I is, by the convolution theorem, 

the self-convolution of the indicator function IA(r) of the aperture. For a 
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rectangular aperture a x x  a th i s  is 
Y' 

IA(r) IA(k-l Rw - r )  d2r ." = 

( W A I ~  [ax - 1k-l h x l l  [a - Ik-l ~ ~ ~ 1 1 ,  Y 

lux/ < kax/R, Iu I < ka /R, (5 * 3) Y 
and Q ( g )  = 0 for  w . " .  outside the rectangle (kax/R) x (kaJR). 

values of Eq. (5.2) are approximately 

Hence the eigen- 
Y 

= ( x R ) ~  - Imxl - lmyl 6 y / b y ~ / ~ ,  m 
(5.4) Y Y  

= hR/ax << bv, 6 = hR/a << b 
&X A Y  Y 

with [XI = 0 for  x < 0. 

The minimum relative mean-square error of an unbiased estimate of the 

coefficient P 

is 

B = (b b )-Igoa6. y) exp 2 ~ i ( r n ~  x b L 1  + m Y Y  yb -1) &dy (5 * 5) 
." X Y  m 

E~/B, '  2 (N/ESl2 - bXl 6x/bx1-1 [I - l m  I 6 /b I-1 (5.6) 

where M = Mol (A R)2 = A /A is the number of spatial  degrees of freedom in  the 0 6  

object 0. (Ao = b b = the area of the object.) We have referred the mean- 

square errors t o  the value of the central coefficient Bo = %/Ao. 

Eq. (5.6) agrees with Eq. (4.19). 

I Y Y Y  

X Y  

For g~ = ,O 

As I mxl and I m I increase, so does the minimum relative mean-square error 
Y 

E /B 2 .  I t  appears t o  become inf ini te  for Im,l = bx/6x or Im I = b /6 but the 
P O  Y Y Y' 

exact eigenvalues A m  do not go to  zero at that point, although they become - 



extremely small for Imxl > bx/6x, lmyl > b / 6  The complex exponential sampling Y Y' 
function Fm(u) in Eq. (1.6) will bear a significantly large coefficient Bm when 

the object contains many details whose widths in the x- and y-directions are of 
- ." 

the order of bx/mx and b /m respectively. This coefficient will be subject 
Y Y' 

to a very large error when the details have widths smaller than 6x = hR/ax and 
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